希尔伯特😧二十三🟚个问题当中的第一问,连续统基数问题🞒📧。

    连续统问题,即“在可数集基数和实数集基数之间没有别的基数”的问🅬🉫题。

    所谓“基数”,便是指集合的“绝对测度”。一🏕个集合里面有一个元素,那么这个集合🊊🎪📹的基数性就是一,有两个元素,基数性就是二。以此类推。

    而“所有整数所有实数”这种无限可数集合,其基🝻数性,就记🔛🁘🆃做“阿列夫零”神州称之为🂔“道元零数”,最小的无限整数。

    神🀴🁂🃁州的古人曾经认为,数字的总数、无限的大就是道的数字。

    阿列夫零加一🝠🌡还是阿列夫零。阿列夫零加阿列夫零还🌆是阿列夫零。阿列夫零乘以阿列夫零还是阿列夫零。

    无限大、正无穷。普通的操作方式对于这个数字完全没有意🊖义。

    那么,世界上还有比这个无限大的数🀚字更🙒大的数码?

    实际上是有的。

    那就是“幂集”的基数。

    如果一个集合有“1”这一个元素,那么它的幂集就有两个“1”还有🅬🉫空集🜳?。

    如果一个集合有“1,2”两个元素,那么它🕝🊨就有四个幂集空集?,集合{1},集合{🂔2},集合{1,2}。

    以此类🎛推,当一个集合有三⛰🞁👈个元素,那么它就有八个幂集。当集合元素增加道了四个的时候,⛲🞕幂集就增加到了十六个。

    一个集合的幂集,永远比这个集合的🀚元素要多。如果一个集合有n个元素,那么它就有2的n次方个幂🖂🏳集。

    无限可数集合的幂集,二的阿列夫零次方,就是人类发现的第二个无限大的数字阿列夫🊊🎪📹一。

    而连续统问题,也可以概括为“阿列夫零和阿列夫一之间,究竟存不存在另一个🏫🝆🈹基数?”。

    有没有一😧个集合的基数,明确的大于一个无限大,小于另🙒一个无限大?

    这就是二十三问当中的第一问。

    二十三问当中🝠🌡。第二问、第十问是关系到算学根基的,被认为是极端重要的。也正是因为算主那“完备性、一致性、可判🍦定性”的思想,所以这两问素来被相提并论。但从“提问者”的思路来说,第一问和第二问的关系。反而更为紧密。第一问和第二问,连续统和完备性,根基上是相连的。

    第一问的问⛩题引导出了第二问的问题🀚,第二问的🏕解答启发了第十问的解答。

    这几个问题,可以看做是一个体系。